Osmotic shock induces the presence of glycocardiolipin in the purple membrane of Halobacterium salinarum.
نویسندگان
چکیده
In the purple membrane (PM) of Halobacterium salinarum is present a phospholipid dimer consisting of sulfo-triglycosyl-diether (S-TGD-1) esterified to the phosphate group of phosphatidic acid (PA), i.e., S-TGD-1-PA, called glycocardiolipin (GlyC) (Corcelli, A., M. Colella, G. Mascolo, F. P. Fanizzi, and M. Kates. A novel glycolipid and phospholipid in the purple membrane. 2000. Biochemistry. 39: 3318-3326). The GlyC content of whole cells, PM, and other cell fractions of H. salinarum have been analyzed. GlyC is a nonabundant phospholipid in H. salinarum cells, and it represents one of the major phospholipids of isolated PM. In this report, we show that a) GlyC is formed during the isolation of PM, b) GlyC increase in H. salinarum cells is specifically induced by osmotic shock, and c) in correspondence with GlyC increase, a decrease of S-TGD-1 levels occurs. The changes in membrane lipid composition observed during the isolation of PM are due to de novo synthesis of GlyC from S-TGD-1.
منابع مشابه
Lipid-protein stoichiometries in a crystalline biological membrane: NMR quantitative analysis of the lipid extract of the purple membrane.
The lipid/protein stoichiometries of a naturally crystalline biological membrane, the purple membrane (PM) of Halobacterium salinarum, have been obtained by a combination of (31)P- and (1)H-NMR analyses of the lipid extract. In total, 10 lipid molecules per retinal were found to be present in the PM lipid extract: 2-3 molecules of phosphatidylglycerophosphate methyl ester (PGP-Me), 3 of glycoli...
متن کاملMatrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of archaebacterial lipids in lyophilized membranes dry mixed with 9-aminoacridine
A method of direct lipid analysis by MALDI mass spectrometry in intact membranes, without prior extraction/separation steps, is described. The purple membrane isolated from the extremely halophilic archaeon Halobacterium salinarum was selected as model membrane. Lyophilized purple membranes were grinded with 9-aminoacridine as dry matrix and the powder mixture crushed in a mechanical die press ...
متن کاملExpression of salinarum halorhodopsin in Escherichia coli cells: solubilization in the presence of retinal yields the natural state.
Salinarum halorhodopsin (HsHR), a light-driven chloride ion pump of haloarchaeon Halobacterium salinarum, was heterologously expressed in Escherichia coli. The expressed HsHR had no color in the E. coli membrane, but turned purple after solubilization in the presence of all-trans retinal. This colored HsHR was purified by Ni-chelate chromatography in a yield of 3-4 mg per liter culture. The pur...
متن کاملUnfolding pathways of individual bacteriorhodopsins.
Atomic force microscopy and single-molecule force spectroscopy were combined to image and manipulate purple membrane patches from Halobacterium salinarum. Individual bacteriorhodopsin molecules were first localized and then extracted from the membrane; the remaining vacancies were imaged again. Anchoring forces between 100 and 200 piconewtons for the different helices were found. Upon extractio...
متن کاملNanoscale Electric Characteristics and Oriented Assembly of Halobacterium salinarum Membrane Revealed by Electric Force Microscopy
Purple membranes (PM) of the bacteria Halobacterium salinarum are a unique natural membrane where bacteriorhodopsin (BR) can convert photon energy and pump protons. Elucidating the electronic properties of biomembranes is critical for revealing biological mechanisms and developing new devices. We report here the electric properties of PMs studied by using multi-functional electric force microsc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of lipid research
دوره 44 11 شماره
صفحات -
تاریخ انتشار 2003